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Abstract

Histidine is an aromatic amino acid crucial for the biological functioning of proteins

and enzymes. When biological matter is exposed to ionising radiation, highly ener-

getic particles interact with the surrounding tissue which leads to efficient formation

of low‐energy electrons. In the present study, the interaction of low‐energy electrons

with gas‐phase histidine is studied at a molecular level in order to extend the knowl-

edge of electron‐induced reactions with amino acids. We report both on the forma-

tion of positive ions formed by electron ionisation and negative ions induced by

electron attachment. The experimental data were complemented by quantum chem-

ical calculations. Specifically, the free energies for possible fragmentation reactions

were derived for the τ and the π tautomer of histidine to get insight into the struc-

tures of the formed ions and the corresponding neutrals. We report the experimental

ionisation energy of (8.48 ± 0.03) eV for histidine which is in good agreement

with the calculated vertical ionisation energy. In the case of negative ions, the

dehydrogenated parent anion is the anion with the highest mass observed upon dis-

sociative electron attachment. The comparison of experimental and computational

results was also performed in view of a possible thermal decomposition of histidine

during the experiments, since the sample was sublimated in the experiment by resis-

tive heating of an oven. Overall, the present study demonstrates the effects of elec-

trons as secondary particles in the chemical degradation of histidine. The reactions

induced by those electrons differ when comparing positive and negative ion forma-

tion. While for negative ions, simple bond cleav ages prevail, the observed fragment

cations exhibit partly restructuring of the molecule during the dissociation process.
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1 | INTRODUCTION

The ever‐increasing amount of ionising radiation to which human

beings are exposed to in modern society is understood to be the major

cause of damage to living cells.1,2 Electrons are one of the most abun-

dant secondary species formed after primary radiation impact with

yields of around 5 × 104 per MeV deposited energy of the incident

radiation3,4 and kinetic energies < 20 eV. Also in the case of ion beam

tools for cancer therapy, it was shown that a large majority of second-

ary electrons produced have kinetic energies < 30 eV.5,6 These elec-

trons can react with molecular components of the cell to form positive

and negative ions and radicals and can substantially contribute to the

cell damage through sugarmodifications, base release, and single strand

and double strand breaks.7,8

Thus, the underlying processes of the damage and the repair of

biologically essential molecules, such as DNA and proteins, are of

great importance and a subject of intense research. Especially the

onset of the different processes induced by low‐energy

electrons leading to formation of positive and negative ions and rad-

icals is crucial to provide more accurate predictions for ion beam

cancer therapy, shielding of human space missions, prediction of

the consequences of exposure to radiation, and for possible

formation and detection of amino acids in extraterrestrial

environments.9

Histidine (His; see Scheme 1) is an essential aromatic amino acid

that is crucial for the biological functioning of proteins and enzymes.

It is a precursor of the hormone histamine, an inflammatory agent in

the immune response system, and a key residue in active sites of

enzymes.10,11 Due to the imidazole moiety, it can adopt two tauto-

meric conformations (Scheme 1) with H on either of the two N atoms

referred to as the τ tautomer (τHis) and the π tautomer (πHis), while it

is suggested that the τ tautomer is preferred (80:20) in the gas phase

at 298 K.12,13

While the electron ionisation mass spectra of most of the amino

acids are available,14 detailed knowledge on the ionisation energies

(IE) of the molecules and the appearance energies (AE) of fragment

ions formed upon ionisation are restricted to few amino acids investi-

gated up to date. A literature survey reveals that the IEs and AEs were

investigated experimentally for glycine, alanine,15 and valine.15-17 The

vertical IE for His has been reported in the theoretical computational

works of Huang et al12 and Close,18 who examined the vertical IEs

of all common α‐amino acids. The formation of negative ions from

amino acids upon resonant attachment of free electrons was previ-

ously studied as a function of the electron energy for glycine, proline,
SCHEME 1 Molecular structures of two tautomeric forms of L‐
histidine
tryptophan, and methionine.19-28 In contrast, for His, the electron

energy dependence was neither studied nor discussed to the authors'

knowledge. Voigt and Schmid studied negative ion mass spectroscopy

of His in the gas phase,29 where they used a low‐temperature plasma

source to generate low‐energy electrons with approximate kinetic

energies between 2 and 4 eV. They reported the relative abundances

of fragment anions like [His–COOH] − in the negative ion mass spec-

trum and obtained the dehydrogenated parent anion [His‐H]− as the

most abundant fragment anion.29 The electron energy dependence

of negative ions formed via dissociative electron attachment (DEA)

to His was only reported for the condensed phase by Abdoul‐Carime

and Sanche.30 They measured the desorption of anions from thin films

of His upon the impact of low‐energy electrons with kinetic energies

between 5 and 35 eV.

In the present gas‐phase experiments, we investigate the forma-

tion of positive and negative ions of His in low‐energy electron colli-

sions. The measurement of temperature dependent mass spectra at

the electron energy of 70 eV shows an increase of mass peaks with

temperature. Such behaviour was previously assigned to a fractional

thermal decomposition of the His sample during the sublimation pro-

cess. Therefore, we assign the ion yield of the parent cation and the

dehydrogenated parent anion to form unambiguously from the

nondecomposed sample. For other fragment anions and fragment cat-

ions, the possibility of formation from possible thermal decomposition

products was considered. As will be shown below, the comparison of

experimental data and the results of quantum chemical calculations

allow a feasible assignment of most obtained ion yields to the intact

neutral His precursor.

SPECTROMETRY
2 | EXPERIMENTAL METHODS

2.1 | Chemicals

His with stated purity of 99% was purchased from Sigma‐Aldrich

and used as received. It appears as white powder under standard

conditions. The vapour pressure of His required heating of the oven

to about 160°C at around 10−8 to 10−7 mbar to allow the gas phase

measurements with the utilised experimental set‐up. The tempera-

ture of the ion source was with 90°C always lower than the oven

temperature, excluding subsequent effects at a later stage. Wilson

et al31 performed VUV synchrotron ionisation studies of His and

concluded that a fraction of His sample is already decomposed at

the heating temperature of 100°C. Therefore, we also measured

the temperature dependence of the electron ionisation mass spec-

trum at 70 eV in the course of the present experiments. The

resulting mass spectra at three different temperatures of the sample

are shown in Figure 1. The spectra are normalised to the ion yield of

the parent ion at m/z 155. These data indicate that the most abun-

dant ions above m/z 32 increase with oven temperature, as will be

discussed in more details below.



FIGURE 1 (A) Electron ionisation mass spectrum of the His sample heated to 160°C, 180°C, and 190°C, respectivly. The spectra at the two
higher temperatures are normalised to the spectrum at 160°C in order to show same peak heights of the parent ion. Since the parent ion yield
increases with temperature, constant background signals like N2

+ and O2
+ decrease in the spectra at elevated temperatures. (B) Detailed view of

the spectrum shown in (A) in the mass region from m/z 78 to m/z 87. (C) Detailed view of the spectrum shown in (A) in the mass region from m/z
106 to m/z 114
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2.2 | Mass spectrometry experiments

The present experimental data were recorded with a crossed electron‐

molecular beam set‐up combined with a quadrupole mass spectrome-

ter. It was described in detail elsewhere.32 Briefly, electrons were

emitted from a hairpin filament of the ion source and subsequently

formed into an energetically and spatially focused beam by a hemi-

spherical electron monochromator (HEM). A Faraday cup at the end

of the HEM allows for checking stable electron beam conditions.

The energy resolution for the present data was around 100 meV as

determined from the full‐width‐half‐maximum (FWHM) of the well‐

known SF6
−/SF6 resonance.33 The molecular beam originates from

an oven filled with His that was mounted perpendicularly to the

HEM. It was heated at abovementioned conditions to evaporate the

His. The gaseous compound was guided through a capillary with 1

mm inner diameter leaving it as effusive beam and crossing the elec-

tron beam in the interaction region at single‐collision conditions. Here,

anions and cations were formed via dissociative electron attachment

and electron ionisation, respectively. The ions were extracted by a

weak electrostatic field into a quadrupole mass analyser. The mass

selected ions were detected by a channel electron multiplier and proc-

essed by a discriminator and pulse counting unit.

For cations, ionisation and appearance energies were obtained by

recording the ion efficiency curves of the mass‐selected ions. The

electron energies were varied between 5 and 17 eV. The electron

energy range was adapted for each cation to include the threshold

and a region of about 3 eV below and above the threshold. The energy

scale was calibrated by measuring the well‐known ionisation energy34

of Ne at 21.56 eV.

For negative ions, the anion efficiency curve of the mass‐selected

products was obtained in the electron energy range of ~0 to 17 eV.

The well‐known resonance position at 0 eV of SF6
−/SF6

33 was

deployed for calibration of the electron energy scale.
3 | COMPUTATIONAL METHODS AND
DATA ANALYSIS

3.1 | Determinations of IEs/AEs

The behaviour of ionisation cross sections in the threshold region was

first described by Wigner and later extended by Wannier. Wigner the-

oretically developed a simple power law, where the shape of the cross‐

section close to threshold depends on the number of outgoing elec-

trons.35 In case of single ionisation by impact of an electron, he pre-

dicted a linear behaviour of the cross section. Wannier extended the

theory for electron ionisation processes leading to a three charged par-

ticles final state (two electrons and one ion),36 where such developed

model describes the cross‐section behavior close to the threshold.

Including a Heaviside function θ, the cross‐section σ can be expressed

as follows:

f Eð Þ ¼ bþ c E−AEð Þnθ E − AEð Þ; (1)

where b is a linear background, c is a scaling parameter, E is the elec-

tron energy, AE is the appearance energy, and n is the exponent.

Wannier calculated n only for hydrogen36 and must otherwise thus

be determined experimentally.

The experimental set‐up entails a finite energy resolution in form

of a Gaussian distribution

g Eð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πρ

p exp −
E2

2ρ2

 !
(2)

with the standard deviation ρ representing the resolution. The cross‐

section function is convoluted with the Gaussian profile giving the pre-

diction for an experimentally measured cross‐section curve with reso-

lution ρ
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σ Eð Þ ¼ f*gð Þ Eð Þ ¼ ∫
∞

−∞dxf xð Þg E − xð Þ ¼ ∫
∞

−∞dx bþ c E−AE½ �nθ E − AE½ �� � 1ffiffiffiffiffiffiffiffi
2πρ

p

exp −
E−xð Þ2
2ρ2

 !
¼ bþ cffiffiffiffiffiffi

2π
p ρnΓ nþ 1ð Þexp −

1
4ρ2

AE−Eð Þ2
� �

Dnþ 1
1
ρ
AE − Eð Þ

� �
;

(3)

where Γ is the gamma function and Dn+1 is a parabolic cylinder

function.

This function for the cross‐section allows fitting the experimental

data. As a result, the parameters of such function, especially the AE,

can be extracted. For this purpose, a software tool was developed based

on a previous version37 written in Python,38 using the SciPy,39

NumPy,40 andMatplotlib41 libraries. The cross‐section function is fitted

by means of the Chi‐Square (χ2) method and minimising the squared

sum of the difference of data and fit for each point. The data points

are weighted according to their respective uncertainties. The required

input parameters are the fitting range around the estimated AE and

the resolution ρ. The number of iterations depends on the number of

data points of the according measurement and is higher for larger data

sets. With each iteration of the fitting procedure, the fitting range is

narrowed and centred around the determined AE value, until either

the set number of iterations is reached or alternatively the change of

the fitting range falls below a beforehand specified value. It has proven

beneficial for the procedure to initially set a higher resolution than

experimentally achieved and subsequently reduce it to its actual value

throughout the iterations. Besides the AE value, the output parameters

include the linear background b, the scaling factor c, and the exponent n.

Errors resulting from the fit can be extracted from the covariance

matrix. A further uncertainty arises from the setting of the fitting range.

We conducted test series and found that the determined onset value

remains stable within maximal deviations of 50 meV for fitting ranges

≥3 eV, which was then chosen as standard input value. Thus, the statis-

tical uncertainty on an AE value consists of the uncertainty arising from

the fit and the uncertainty caused by the choice of the fitting range. For

the analysis, the square of their quadratic addition is stated.

Since the energy scale was calibrated with this analysis tool, the

uncertainty on the AE of the neon ion yield transfers into a systematic

uncertainty of all analysed cations and amounts to 10 meV. Since the

value is equal for all cations, it will not be stated during the results part

for reasons of clarity. It is important to note that the energy resolution

of the HEM and the error on the AE value are two different parameters.

For channels suggesting two or more appearance energies, the

number of thresholds is a further input parameter for the programme.

The first onset is fitted as described above, and subsequently, the fit is

subtracted from the data and the same method is applied on the next

threshold. The defined fitting ranges may each only include one

threshold.

3.2 | Determination of peak onsets in anion
efficiency curves

For data analysis of the DEA processes, (multiple) Gaussian fits were

applied to the experimental data curves. The peak maxima xmax,i of

each i‐th peak was taken from the fit together with the error. To
obtain the onsets of the reaction, it has to be taken into account that

the resolution of the set‐up broadens the peak by introducing a natu-

ral tail. Earlier methods42,43 applied linear fits to the steepest part of

the Gaussian profile which resulted in large uncertainties in the onset.

Here, a new method is introduced. The onset is defined as follows:

xonset ¼ xmax;1 − 2σ; (4)

with xmax,1 the peak maximum and σ the standard deviation of the first

peak. This cuts the outbounding tail at a defined position, making the

method both robust concerning uncertainties and reproducible. Two σ

were chosen as the tail is cut at a comparable level to earlier methods.

3.3 | Quantum chemical calculations

The lowest energy structures of His tautomers, τ (τHis) and π (πHis),

were taken from the study of Stover et al.13 Quantum chemical calcu-

lations employing M062x/aug‐cc‐pVTZ level of theory44,45 and basis

set46,47 were carried out to calculate ionisation energies, adiabatic

electron affinities, and the free energy of reactions, ΔG(298K), which

is calculated for each fragmentation pathway as ΔG = ΣG (products) −

ΣG (reactants).48 Calculated frequencies confirmed that the structures

are local minima on the potential energy surface and not transition

states. We estimate an error of less than 0.09 eV for the reaction ener-

gies and 0.11 eV for ionisation potentials from the reported mean

unsigned error for M062x thermochemistry and ionisation potentials,

respectively.44 We have carried out some computations with the

DSD‐PBEP86 double‐hybrid DFT method,49 which performs well for a

wide range of chemical properties.50 The results show thatM062x com-

pares favourably to this higher level method, which lends support to the

use of M062x more generally for the present set of systems.

The thermodynamic threshold for the DEA reactions discussed in

the next section can also be expressed by ΔG([M‐X]−) = DE(M‐X) –

AEA(M‐X), where M denotes the molecule and X the released neutral,

DE(M‐X) is the bond dissociation energy and AEA(M‐X) is the adia-

batic electron affinity of the corresponding product. The threshold

energy for the experimental observation of [M‐X]− in electron attach-

ment experiments coincides with ΔG([M‐X]−), if the products are

formed with no excess energy. Otherwise, fragmentation reactions

occur at electron energies above the thermodynamic threshold

ΔG([M‐X]−) carrying away the excess energy as kinetic energy or inter-

nal energy, which can induce further fragmentation.

All calculations were performed with the Gaussian 09 pro-

gramme,51 and the structures and dissociation reactions considered

in this study are summarised in the Supporting Information.

SPECTROMETRY
4 | RESULTS AND DISCUSSION

4.1 | The mass spectrum at ~70 eV and electron
ionisation close to threshold

The mass spectrum shown in Figure 1A reveals that the parent ion

His˙+ at m/z 155 is a minor species among the other ions observed.
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Therefore, one may conclude that strong fragmentation may occur

upon ionisation of His by electron interactions. The most abundant

peaks above m/z 32 can be found in the present spectrum at m/z

110 ([His–COOH]+), m/z 82 ([C4N2H6]˙+), m/z 81 ([C4N2H5]
+), and

m/z 44 (CO2
+/[NH3CHCH2]˙+). Major peaks at low masses, m/z 18,

28, and 32, can be assigned to ionisation of residual water and air.

The electron ionisation mass spectrum (at 75 eV) reported in the Spec-

tral Database for Organic Compounds52 is in qualitative agreement

with the present spectrum, since the same abundant ions—with m/z

82 and m/z 81 as the most abundant species—are observed. However,

the relative abundance of the parent ion in Matsuyama and Wasada52

is lower compared with the present spectrum and a peak at m/z 28

(with ~20% abundance compared with the major ion yield found at

m/z 82) is also visible in the spectrum of Matsuyama and Wasada52

which—in the absence of the O2
+ peak at m/z 32—can be likely

ascribed to CO+. The current spectrum does not allow a conclusion

on the ion yield at m/z 28, since it is contaminated by abundant N2
+

background signal. Another disagreement can be found for the peak

at m/z 44. This peak shows a minor yield in Matsuyama and Wasada52

but an abundant peak at m/z 44 is found in the present spectrum. The

deviations may be ascribed to the different temperatures used, which

will influence the yields of the various ionic products. The spectrum

shown in Matsuyama and Wasada52 was recorded at the sample tem-

perature of 190°C (a spectrum at the same sample temperature is

included in Figure 1) while the ion source temperature of 230°C was

considerably higher than the presently used 90°C.

We note that electron53 and photon54 ionisation studies with His

were also carried by means of a more gentle sublimation method,

respectively. Both studies employed laser‐induced acoustic desorption

(LIAD) of the His sample, where thermal decomposition should not

play a considerable role. Interestingly, the relative ion yield of the

His cation in the mass spectrum was higher in case of ionisation by

intense femtosecond laser pulses then in the LIAD/electron ionisation

experiment. Overall, above m/z 44 good agreement is obtained for the

present spectrum and the spectra reported in Jarrell et al53 and Duffy

et al,54 ie, by this comparison, it may be concluded that the major frag-

ment ion peaks at m/z 54, 81, 82, and 110 arise from ionisation of

intact His.

Yet in contrast, Wilson et al assigned the ion yield at m/z 82 to

result from ionisation of thermal decomposition products,31 where

thermal decomposition was already operational at the His sample tem-

perature of 100°C; however, we note that they produced gas‐phase

His by particle evaporation. Interestingly, they also observed a peak

at m/z 111, which was about 1.5 times more abundant than m/z

110. These authors proposed that His loses CO2 by thermal decompo-

sition and the ion yield of [His‐CO2]
+ at m/z 111 is formed by

nondissociative photon ionisation of neutral histamine ([His‐CO2]).

The release of neutral CO2 as one of the gaseous products (besides

H2O and NH3) upon thermal decomposition of His was observed by

Weiss et al,55 while Smith et al56 suggested the abundant formation

of imidazole (mass 68 u) upon pyrolysis of His. In the current mass

spectra, we obtain only a very weak signature of the imidazole ion

compared with CO2. The present mass spectrum also does not provide

SPECTROMETRY

evidence of abundant formation of ([His‐CO2]

+ like in Wilson et al,31

where the latter fragment ion was more abundant than [His–COOH]+.

The present ratio of [His‐CO2]
+ and [His–COOH]+ is only ~20% at the

sample temperature of 160°C and thus just a factor of ~3 above the

isotope ratio of 6.6% due to C‐13, N‐15, or H‐2 in [His–COOH]+.

The absence may be ascribed to the different nature of the ionising

particle—electrons in the present work against photons in Wilson

et al31—or the subsequent degradation of [His‐CO2] due to the ele-

vated temperature in the present experiment. We favour the latter

explanation since the electron ionisation mass spectrum of histamine

available at the NIST database14 shows an abundant peak at m/z 30

([NH2CH2]
+) which is by a factor of ~10 stronger than the parent

ion. Based on this ratio, the contribution of the histamine parent ion

to the signal m/z 111 would be only ~2% due to the low abundance

m/z 30 in the present mass spectrum at 160°C. Therefore, we rule

out that the neutral gaseous beam contains considerable amounts of

histamine and assign the ion signal at m/z 111 to be mainly formed

from the isotope contribution of [His–COOH]+ and background signal.

This assignment is further supported by the constancy of the ion signal

at m/z 111 when the sample temperature is increased (see Figure 1C).

This means that the increase of the [His–COOH]+ isotope and the

decrease of the background signal, both relative to the signal of the

parent ion, keep their balance with increasing temperature.

Figure 2 shows the ion yield curve close to the threshold for all

investigated cations as a function of the electron energy. The experi-

mentally determined IE of His and the derived AEs of ions found at

m/z 110, 82, 81, and 44 are summarised inTable 1. The corresponding

calculated structures of the cations are shown in Figure 3 for both tau-

tomers. Table 2 summarises for all observed cations the exponent of

the fitted Wannier function.

In the present experiments, the experimentally measured IE of His

is (8.40 ± 0.04) eV, which is in good agreement with the calculated ver-

tical ionisation energy (VIE) of 8.45 eV of πHis. For the τHis tautomer,

we obtain a calculated VIE of 8.86 eV. The πHis is 0.08 eV above the

ground state of τHis, which is the most stable tautomer. The population

ratio at the approximate evaporation temperature of 440 K is 1:0.12.

However, we do not observe a clearly discernible threshold close

to 8.86 eV for the τHis fraction in the neutral molecular beam. The cal-

culated adiabatic ionisation energies (AIEs) for His tautomers are 8.13

eV for πHis and 8.30 eV for τHis. Thus, our experimental value is also

close to the AIE of τHis tautomer. We have performed computations

with the DSD‐PBEP86 double‐hybrid DFT method that confirmed

the values of VIE and AIE obtained by M062x (see Table 1). We have

to note that the VIEs and AIEs of both tautomers are very sensitive

to the conformations as it was observed by Huang et al who performed

full conformational search and suggested that the equilibrium

population should lead to the observable ionisation energy of 8.5

eV.12 The reported VIEs for the most stable conformers (within 0.1

eV) for πHis range between 8.14 and 8.52 eV, while for τHis, it ranges

between 8.43 and 8.60 eV.12 For the most stable conformers, the VIEs

are 8.43 and 8.52 eV for τHis and πHis, respectively. Wilson et al31

reported an ionisation energy of (8.2 ± 0.1) eV, which was

obtained for VUV photon ionisation experiments. They also calculated



FIGURE 2 Ion yield curves close to threshold of the experimentally
observed cations. The black dots and error bars represent the data
and the orange line is the fitted Wannier function convoluted with a
Gaussian profile. The vertical black lines show the appearance energy
with the energy resolution of the HEM marked as dark grey region.
Fitting regions are represented by the light grey areas. The lowest
panel associated with m/z 44 shows a magnification of the first
threshold region. The inset displays the whole measurement range
including the second threshold at higher energies [Colour figure can be
viewed at wileyonlinelibrary.com]
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ab‐initio structures of seven low‐lying conformers of πHis and their

cations and derived VIEs and AIEs. They suggested that the presence

of up to five conformers led to smearing out the photoionisation onset.

Using a heater temperature of 100°C, these authors ascribed the
experimentally derived IE to the calculated adiabatic values of the sec-

ond and third most energetically favourable conformer. The adiabatic

values of 8.16 eV were in good agreement with their experimental

result and the presently calculated AIE of πHis. However, they have

only considered πHis and only several conformers. Huang et al12

reported for the most stable conformers the AIEs of 7.92 eV for τHis

and 8.17 eV for πHis, where the AIE of πHis is in better agreement with

the experiment of Wilson et al.31 As already mentioned, Wilson et al

produced gas‐phase His by particle evaporation, where particles were

produced by atomising solutions of His in water that could change

the tautomeric population. As far as other theoretical calculations in

the literature are concerned, Gil et al57 calculated the AIEs of different

amino acids and obtained a value of 7.88 eV for His, while in the work

of Close,18 the VIEs were reported for different conformers and differ-

ent levels of theories ranging between 8.49 and 8.72 eV. Noteworthy,

the presently measured ionisation energy of His (8.40 ± 0.04) eV is

close to the reported experimental VIE of imidazole and 1‐methyl‐

1H‐imidazole58,59 of 8.66 eV, which suggests that the electron is

removed from imidazole moiety.

Even though our experimental ionisation energy of His is in great

agreement with the calculated VIE of 8.43 eV reported by Huang

et al for τHis tautomer,12 due to the likely presence of variety of con-

formations and the close value of the VIE for the πHis (8.52 eV), it is

difficult to make a conclusive assignment on whether the experimental

threshold corresponds to ionisation of τHis or πHis.

The presently observed ion yields of fragments may result through

the following reactions:

m=z ¼ 110:e− þHis→ His−COOH½ �þ þ CO2 þH· þ 2e− (5)

m=z ¼ 82:e− þHis→ C4N2H6½ �·þ þ CO2 þH2 þHCNþ 2e− (6a)

m=z ¼ 82:e− þ C4N2H6½ �→ C4N2H6½ �·þ þ 2e− (6b)

m=z ¼ 81:e− þHis→ C4N2H5½ �þ þ CO2 þH2 þH2CH
· þ 2e− (7a)

m=z ¼ 81:e− þ C4N2H6½ �→ C4N2H5½ �þ þH· þ 2e− (7b)

m=z ¼ 44:e− þHis→ NH2CHNH½ �·þ þ C4NH5½ � þ CO2 þ 2e− (8a)

m=z ¼ 44:e− þ CO2→ CO2½ �·þ þ 2e− (8b)

The experimental threshold for the product ion [His–COOH]+ at

m/z 110 is (8.52 ± 0.08) eV (Table 1). This fragment ion may be formed

from His through a simple bond cleavage releasing CO2 + H˙, see reac-

tion (5) and Figure 3. The calculated bond dissociation energy is similar

for the τHis and the πHis tautomers (3.27 and 3.19 eV, respectively).

The calculated free energy of reaction (5) is 8.53 eV for τHis and

8.98 eV for πHis, which is in excellent agreement with the experiment

suggesting the τHis tautomer present in the beam. We have noted

that after the His–COOH bond dissociation, the strong interaction

between the H of the amino group with N of the imidazole ring can

SPECTROMETRY
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TABLE 1 Summary of the observed cations including their mass, the composition of the products, and the according neutrals and ionisation/
appearance energy

Mass

(m/z) Cation Neutral(s) in Calc.

Ionisation/Appearance Energy, eV

LitExp.

Calc.a

τHis πHis

155 His˙+ ‐ 8.40 ± 0.04 8.86/8.30 (VIE/AIE) 8.88/8.33b 8.45/8.13 (VIE/AIE) 8.44/8.13b 8.2‐8.72e

110 [His–COOH]+ CO2 + H˙ 8.52 ± 0.08 8.53 8.98 8.5f

82 [C4N2H6]˙+ CO2 + H2 + HCN 8.54 ± 0.04 8.62c 8.51c ‐
7.97d 7.90d

81 [C4N2H5]
+ CO2 + H2 + H2CN˙ 9.56 ± 0.11 9.73 9.67 ‐

44 [NH3CHCH2]
+ [C3N2H3]˙ + CO2 10.23 ± 0.09 10.41 10.34 ‐

44 CO2˙+ 13.8 ± 0.5 13.94 13.78g

Note. Experimental and calculated values are stated along with data available from literature. Uncertainties of the experimental values refer to the statistical

error. The systematic uncertainty is equal for all and amounts to 10 meV.
aM062x/aug‐cc‐pVTZ calculated ionisation potentials and free energies of reactions ΔG(298K).
bVertical and adiabatic ionisation energies obtained by DSD‐PBEP86 double‐hybrid DFT method.
cValues are associated with reaction (6a) and 4‐methylimidazole ion.
dValues are associated with reaction (6a) and 4‐methylene‐imidazole ion.
eRefer to previous works.12,18,31

fRefer to Wilson et al.31

gRefer to Linstrom and Mallard.14
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lead to the H transfer towards imidazole resulting in structures that

are about 0.5 eV lower in energy (see Supporting Information). Wilson

et al concluded in their photon ionisation studies of thermally subli-

mated His at 363 K that [His–COOH]+ is indeed a fragment formed

by dissociative ionisation of His and excluded thermal decomposition

products as neutral precursors of this ion. The present mass spectra

at different oven temperatures show an increase of the [His–COOH]+

signal by a factor of about 1.5 %, when the temperature is increased

from 160°C to 190°C. We ascribe this effect rather to the increase

of internal energy in the His precursor instead of the increase in ther-

mal decomposition. The alteration of mass spectra due to the increase

of molecular temperature was previously reported for various mole-

cules.60 We further note that neutral [His–COOH]˙ is a radical, and

one may expect that even electron species are formed by thermal

decomposition.

The fragment ion [C4N2H6]˙+ at m/z 82 has a measured appear-

ance energy of (8.54 ± 0.04) eV, which is in fair agreement with the

calculated AE of 8.62 eV for τHis 8.51 eV for πHis, where the 4‐

methylimidazole ion is formed with concomitant breakage of the

whole chain into simple molecules CO2 + H2 + HCN, see reaction

(6a). Simple Cα–Cβ bond cleavage with transfer of H from Cβ or from

the amino group to Cα during dissociation would require energies far

above the experimentally obtained AEs (see Supporting Information).

If one follows the assignment by Wilson et al,31 (signal at m/z 82

would be from a thermal decomposition product identified as 4‐

methylimidazole), reaction (6b) may occur and the AE should be com-

pared with the IE of neutral [C4N2H6]. The calculated VIEs are 8.64 eV

(imidazole ring from τHis) and 8.61 eV (from πHis) and thus above the

experimental value. The reaction (6b) related to the thermal
decomposition can be ruled out following the argumentation above

and below on the discussion of the formation of ion at m/z 81.

From the theoretical point of view, formation of the fragment ion

[C4N2H6]˙+ received particular attention in literature,61-63 since it is

the most abundant ion in the mass spectrum of His and corresponds

to the charged organic substituent [RH]˙+ in general consideration of

the amino acid structures [R−CH (NH2)COOH]. In previous computa-

tional studies, it was suggested that a proton transfer from the amino

group to basic nitrogen of the imidazole moiety occurs after ionisation

of His and in the following step, the Cα−RH
+ bond is broken. Gil et al61

calculated the electronic energy profile for such fragmentation process

for τHis and obtained a height barrier of 0.80 eV relative to the ionised
τHis. In this case, the formed ion is the 4‐methylene‐imidazole ion (see

Figure 3) that is 0.68/0.65 eV more stable over the 4‐methylimidazole

ion (related to τHis and πHis, respectively). However, the calculated

free reaction energy for this process is 8.21 eV for τHis and 8.14 eV

for πHis and accounting for the barrier by Gil et al of 0.73 eV (the dif-

ference between the formed products and the barrier height) would

result in AEs that are above the measured AE (see Supporting Informa-

tion). If the chain would decompose as in (6a), the calculated free reac-

tion energy is 7.97 eV for τHis and 7.90 eV for πHis, where accounting

for the barrier (0.73 eV) by Gil et al would give 8.7 and 8.63 eV,

respectively, which is also above the measured AE value. Thus, we

can conclude that the formed ion at m/z 82 is related to 4‐

methylimidazole, and our data suggest that [C4N2H6]˙+ is resulting

from ionisation of the intact His molecule.

Another abundant fragment ion is [C4N2H5]
+ at m/z 81, where the

backbone of the amino acid is broken into several simple molecules

(reaction (7a)) with free reaction energies of 9.73 eV for τHis and



FIGURE 3 M062x/aug‐cc‐pVTZ calculated
minimum energy structures of cations and
neutrals formed upon electron ionisation of
the tautomer τHis (left) and πHis (right),
respectively [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Summary of the observed cations including their mass and
the exponent of the Wannier function as fitted with the analysis tool

Mass, m/z Cation Exponent n

155 His˙+ 1.33 ± 0.04

110 [His–COOH]+ 2.8 ± 0.2

82 [C4N2H6]˙+ 2.07 ± 0.06

81 [C4N2H5]
+ 2.9 ± 0.3

44 [NH3CHCH2]
+ 1.5 ± 0.2

44 CO2˙+ 1.4 ± 0.1

Note. Uncertainties refer to the error resulting from the fit.
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9.67 eV for πHis, which would be in good agreement with the exper-

imental threshold of (9.56 ± 0.11) eV (seeTable 1). Simple Cα−Cβ bond

cleavage showed to have free reaction energies which are lower than

the experimental values, namely, 8.99 eV for τHis and 8.93 eV for πHis

and can be excluded since no threshold at these energies is discernible

in the present experimental data. Since the formation of 4‐
methylimidazole by thermal decomposition was suggested in Wilson

et al,31 we also investigated if the ion yield at m/z 81 was formed by

hydrogen loss from 4‐methylimidazole, reaction (7b). The mass spec-

trum of 4‐methylimidazole in the NIST database suggests this process,

since the ratio of m/z 81 to m/z 82 is 0.75. We calculated the corre-

sponding AEs, obtained a value at 10.5 eV considering that the ion

yield at m/z 81 is formed by the loss of an H atom from the CH3 group

of 4‐methylimidazole and the AE is 12.7 eV if the H atom is lost from

the N position. The disagreement to the experimental values supports

the conclusion from the mass spectra discussed above (m/z 82 is a

fragment ion from ionised His), and therefore, we assign the

experimentally found threshold of (9.56 ± 0.11) eV to dissociative

ionisation of His.

The fragment ion at m/z 44 exhibits two clearly visible thresholds

in the ion efficiency curve (see Figure 2). We found the first threshold

at (10.23 ± 0.09) eV and the second at (13.8 ± 0.5) eV. It should be

noted that the ion yield associated to the first threshold is much less

abundant than the ion yield rising above the second threshold. The

http://wileyonlinelibrary.com
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uncertainty of the second threshold is larger than all the other

reported uncertainties since the ion yield assigned to the first thresh-

old causes an additional background for the analysis. The present

quantum chemical calculations show that the first threshold may be

assigned to formation of [NH2CHNH]˙+ (see reaction 8a and

Figure 2) formed upon electron ionisation of His. Assuming the neu-

trals [C4NH5] + CO2 formed in the fragmentation process, the corre-

sponding free reaction energies of 10.41 eV for τHis and 10.34 eV

for πHis are in fair agreement with the first experimental threshold.

The second threshold at (13.8 ± 0.5) eV is likely due to the ionisation

of neutral CO2 formed by thermal decomposition of His, reaction 8b.

The calculated IE value (13.94 eV) is only slightly higher than the

experimental IE of 13.78 eV reported on the NIST homepage.14 We

also investigated computationally if CO2˙+ may be formed upon disso-

ciative ionisation of His. Since the free reaction energies for CO2˙+

formation from His is 13.45 eV for τHis and 13.33 eV for πHis, we

can exclude this process. Further breaking of the neutral fragment

would require more than 14.10 eV.

As noted above, from the experimental ionisation energy of His it

is not obvious, whether τHis or πHis is present in the beam. When

comparing the calculated thresholds for the two tautomers (see

Table 1) leading to the formation of the fragments of m/z 44, 81,

and 82, within the error of the calculation (0.09 eV) the τHis and
πHis are indistinguishable. The only channel for which ΔG differs for

the two tautomers by ~0.5 eV is the formation of the m/z 110, which

suggests the presence of the τHis in our experiment.

4.2 | Dissociative electron attachment

In the course of the present experiments on negative ion formation,

anion yields were obtained at m/z 154 ([His–H]−), at m/z 110 ([His–

SPECTROMETRY
FIGURE 4 Ion yields (black dots and error bars) and cumulative multiple
dissociation channels. The ion yields are in arbitrary units but the relative
histidine with marked suggestions of strand breaks for the dissociation ch
COOH]−) at m/z 81 ([C4N2H5]
−), at m/z 17 (OH−), and at m/z 16

(O˙−/NH2
−). Figure 4 shows the ion yields as a function of the incident

electron energy together with cumulative multiple fits of the experi-

mentally observed peak structures. The anion assignment and the

composition of the corresponding neutral products for each reaction

channel are summarised in Table 3 together with the measured peak

positions. The respective structures of anions and neutral products

are shown in Figure 5. The dehydrogenated parent anion is formed

in the following DEA reaction upon electron attachment to His:

e− þHis↔ His·−ð Þ #→ His‐H½ �− þH·; (9)

where (His˙−)# denotes the temporary negative ion (TNI) formed by

initial resonant capture of a free electron. In general, the TNI may

undergo dissociation into various stable anions, where the excess

charge is retained, and including at least one neutral (fragment)

formed. However, auto‐detachment is also in competition with DEA,

where the excess charge is spontaneously emitted from the TNI. The

ion yield of [His–H]− is shown in Figure 4A) and exhibits two peaks

at 0.73 eV (with the experimental threshold of (0.4 ± 0.1) eV) and

1.33 eV. Dehydrogenation, defined here as the loss of a single hydro-

gen, can arise through the emission of H˙ from any of the C, N, or O

sites. Quantum chemical calculations show that the free energy of

reaction (9) with the loss of H˙ from the −COOH group is 0.85 eV

for τHis and 0.43 eV for πHis (see Figure 5, where the free energies

for hydrogen loss from all possible sites are shown). However, the

removal of H˙ from the N positions of imidazole moiety or −NH2

group are also low in energy in the range of 0.43 to 0.96 eV. Removal

of H˙ from the C positions is least preferred requiring at least 1.49 eV

in the case of Cα, in other instances ranging from 2.01 to 3.45 eV. The

adiabatic electron affinity (AEA) of [His–H]˙ is in some cases relatively
asymmetric Gaussian fit (orange line) of the experimentally observed
height is comparable among all anions. F: Molecular structure of L‐
annels B‐E [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


TABLE 3 Summary of all observed anions including their mass, the composition of the charged and neutral products, peak positions, and
thresholds for the reaction determined experimentally, by calculations and compared with literature values

Mass

(m/z) Anion Position of Resonances, eV

Threshold, eV

Neutral(s) in Calc.Exp.

Calc.a

τHis πHis

154 [His–H]− 0.73 1.33 0.4 ± 0.1 0.45 0.43 H˙

110 [His–COOH]− ‐ ‐ 0.61 0.55 CO2 + H˙

81 [C4N2H5]
− 0.05 0.27 1.07 0.00 ± 0.01 −0.31 −0.37 H2NĊHCOOH

17 OH− 0.47 1.00 2.29 6.25 7.00 8.50 11.31 0.04 ± 0.03 2.75 2.63 [His–OH]˙
2.44 2.37 [His–COOH]˙ + CO

16 O˙− 4.30 7.00 9.20 11.68 3.9 ± 0.1 2.61 2.31 [His–O]

NH2
− 5.74 5.56 5.72 [His – NH2]˙

3.65b 3.65b

Note. The uncertainty of the peak positions amount to ≤0.05 eV resulting from the Gaussian fit and stepwidth set. The uncertainty stated for the exper-

imentally derived threshold relates to the fit.
aM062x/aug‐cc‐pVTZ calculated free energies of reactions ΔG(298K).
bValues require not just a simple bond cleavage but also rearrangement to form the most stable neutral shown in Figure 5.
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high, eg, for the fragment, which lost the H˙ from the −COOH group,

the AEA amounts to 3.74 eV, or for the loss of H˙ from the N position

of the imidazole ring and −NH2 group it is ~3 eV for both tautomers.

The dehydrogenation reaction upon DEA to amino acids is often

an abundant channel and was therefore observed in linear amino acids

like for example glycine,19 alanine,64 methionine,23 and aromatic

amino acids like proline.65,66 Early DEA studies with formic acid67 as

a model molecule for amino acids suggested that hydrogen loss from

the carboxyl group proceeds through electron attachment into the π*

orbital of the −COOH group. As the position of the observed

resonances and the shape of the ion yields from the amino acid is iden-

tical to the one observed for formic acid HCOOH, this suggestion was

tentatively used also for amino acids.19 However, more recent experi-

mental68 and theoretical studies69 favoured a direct mechanism with

attachment of the excess electron into the σ* (OH) orbital. In all previ-

ous cases where the anion yield was measured as a function of the

electron energy, the ion yield had a characteristic shape with an abrupt

steep onset at ~1 eV. In contrast, in the present case of His, the ion yield

has a notably very different shape and the first peak observed is at

lower energy, ie, 0.73 eV. Moreover, it is also not the most abundant

anion among the observed fragment anions in contrast to other amino

acids. Interestingly, in DEA to His the shape of the ion yield of [His–H]−

shown in Figure 4A rather resembles the shape of the

dehydrogenated anion formed in electron attachment to gas‐phase

imidazole,70 but it is shifted here by about ~1 eV towards lower ener-

gies. In the case of imidazole, it was suggested that the electron attach-

ment takes place through the π* resonance that couples to a

dissociative σ* state localised at the N−H bond.70 Such is only possible

if the nuclear wave packet survives long enough to allow the system

adiabatic crossing between states. According to the quantum chemical

calculations, the removal of H• from the N position of the imidazole

moiety of His requires at least 0.45 eV. It is therefore indeed energet-

ically possible that the observed peak structure results from H‐loss
from the imidazole. However, also H‐loss from the COOH group may

occur as well.

Asmentioned in the Introduction section, Voigt and Schmidt studied

negative ionmass spectroscopy ofHis in the gas phase.29 They obtained

[His–H]− as the most abundant anion for low‐energy electrons with

approximate kinetic energies between 2 and 4 eV. In contrast to

the present single collision conditions, they used higher pressures

(10−2 mbar) and electron currents (10 mA), where secondary reactions

of formed DEA products—including chemical ionisation reactions—

were likely possible. Nevertheless, their spectra provides an overview

of possible anionic species from His. One of the species reported in

Voigt and Schmidt29 is [His–COOH]−, m/z 110, which is also observed

in the present study. However, the corresponding ion yield shown in

Figure 4B turned out to be very low. Therefore, we omit amore detailed

data analysis, and we just have computationally investigated the forma-

tion of this anion in more detail. Assuming a single cleavage of the Cβ−C

bond, the resulting [His–COOH]˙ radicals will have slightly negative

AEA of −0.21 eV for τHis and slightly positive AEA of 0.14 eV for πHis.

The former anion will be unstable towards spontaneous emission of

the excess electron (thus not observable with the present experimental

set‐up). In both cases, this reaction has substantial free energy of reac-

tion and could be observable above the thermodynamic threshold of

3.51 eV for τHis and 3.06 eV for πHis. When two neutral products are

formed, ie, CO2 + H˙, the thresholds lower to 3.37 and 2.92 eV, respec-

tively. If a rearrangement reaction is considered, where the H˙ from the

N position of the imidazole moiety is transferred to the Cβ carbon, the

thermodynamic threshold for the release of two neutrals CO2 + H˙

lowers to 0.61 eV for τHis and 0.55 eV for πHis. Such lowering of the

threshold results from the much higher AEA of 2.65 eV for the radical

formed. The structure of [His–COOH]− is shown in Figure 5. Interest-

ingly, in DEA studies with other amino acids, only the complementary

anion was observed, ie, the anion HCO2
−.19,20,64-66 The latter anion is

not observed within the detection limit of the present apparatus. This



FIGURE 5 M062x/aug‐cc‐pVTZ calculated minimum energy structures of anions and neutrals formed upon DEA to neutral His. The top of the
figure shows values of free energy of reaction (9) related to the release of H• radical from different sites of His. The value of 2.73 eV refers to the
removal of H˙ radical from Cβ position [Colour figure can be viewed at wileyonlinelibrary.com]
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shows that the imidazole moiety, which has released the H˙ from the N

position, retains preferentially the captured electron, which makes

sense due to its particular high electron affinity (2.6 eV).70

Figure 4C shows the anion yield of even electron ion at m/z 81,

[C4N2H5]
−. The ion yield shows three low‐lying peaks at 0.05, 0.27,

and 1.07 eV with the experimental threshold at ~0 eV electron energy.

If such fragment ion is formed upon DEA to His, the imidazole moiety

keeps the excess charge also in this reaction and the backbone of the

amino acid, H2NCHCOOH, is lost. Simple Cα−Cβ bond cleavage would

lead to the imidazole radical with a rather substantial AEA of 2.35 eV

for τHis and 1.77 eV for πHis. However, the reaction would still be
endothermic by 1.76 and 1.20 eV, respectively, and no peak is

observed above this energy experimentally. Therefore, the formation

of [C4N2H5]
− may be based on molecular rearrangement with transfer

of the H˙ from the N position of the imidazole ring to the Cα carbon

(see Figure 5). This structure has an AEA of 2.47 eV, which is even

higher than the imidazole radical formed by simple Cα−Cβ bond cleav-

age. Additionally, it makes the DEA reaction for both tautomers

slightly exothermic by −0.31 for τHis and −0.37 eV for πHis, which is

in agreement with the experimental results. We briefly note that, anal-

ogous for positive ions, we may exclude formation of [C4N2H5]
− by

single H‐loss from 4‐Methylimidazole, [C4N2H6], formed as thermal

http://wileyonlinelibrary.com
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decomposition product from His. We determined the thresholds in

these cases and obtained 1.24 and 1.22 eV for the H‐loss from N1

and N3 positions of the imidazole ring, respectively which can be

expected as energetically most favourable reaction. Therefore, the first

three peaks of the [C4N2H5]
− ion yield shown in Figure 4C cannot be

formed due to DEA to 4‐Methylimidazole.

In the course of the present DEA studies, we additionally found ion

yields at m/z 17 and m/z 16. The corresponding anions are OH− and

O˙−/NH2
−, respectively. Ion yields at these two masses have also been

observed in anion desorption experiments with condensed films of

His, which were irradiated by low‐energy electrons.30 Furthermore,

these anions were observed in DEA studies of other amino acids in

the gas phase (see, eg, Ptasinska et al19).

The present ion yields at m/z 16 and 17 are characterised by a

very rich pattern of peaks from ~0 eV electron energy up to 15 eV (see

Table 3 for exact positions). The OH− anion may be formed by simple

C−OH bond cleavage. The corresponding neutral fragment is shown in

Figure 5. The anion yield of OH− is depicted in Figure 4D. Quantum

chemical calculations show that the C−OH bond dissociation energy

is 4.89 eV for τHis and 4.74 eV for πHis. The calculated AEA of the

˙OH radical of 1.68 eV makes the DEA reaction endothermic by 2.75

eV for τHis and 2.63 eV for πHis. Separation of CO from the formed

neutral lowers slightly the free reaction energy to 2.44 eV for τHis

and 2.37 eV for πHis. Both values are still substantially above the

experimental threshold of (0.04 ± 0.03) eV. Hence, the ion yield below

about 2.4 eV (covering the resonance peaks at 0.47, 1.00, and 2.29 eV)

arises from another (so far unknown) process than DEA of a single

electron to His. We note that a highly abundant peak at zero eV

(exceeding features at higher energies by a factor of about 10) was

observed for OH− in DEA to tryptophan.20 The origin of this signal

remained unclear. In contrast, for proline and aliphatic amino acids,

features in the OH− ion yields close to zero eV were rather weak

and lower in intensity compared with features at higher energies,

and they were assigned to hot band transitions65 or impurities.71 The

most prominent peak observed in the present study is located at the

electron energy of 7 eV (see Figure 4D). In comparison, the ion yield

of OH− desorbed from an electron bombarded condensed film of His

showed a peak at the electron energy30 of 7.7 eV noting also a shoul-

der of another faint peak. Therefore, we may assign these peaks

observed in the gas phase and the condensed phase to the same TNI

state of His, in view that anions formed with low kinetic energies—

representing the low‐energy tail of a resonance—may be more strongly

discriminated against in the desorption process than anions with

higher kinetic energies.72

The most abundant anion observed in the present experiments is

found atm/z 16, assigned toO˙−/NH2
−. Themass resolution of the used

quadrupole mass spectrometer is not sufficient to separate these iso-

baric anions. The measured anion yield is shown in Figure 4E, and the

corresponding neutrals formed are shown in Figure 5, if formed from

His. The anion yield shows 5 peaks above the experimental threshold

of (3.9 ± 0.1) eV (Table 3). Utilising a double focusing mass spectrome-

ter, it was shown in previous DEA studies to the amino acids valine,22

beta alanine73 and glycine74 that both isobaric ions were formed. These
studies showed that NH2
− is formedwith a threshold of ~4 to 5 eV dom-

inating at electron energies of 5 to 8 eV, whereas O˙− was observed

dominantly in a peak close to 4 eV and in the region of 7 to 15 eV. In

the valine ion yield measured previously,22 the O˙− peak close to 4.4

eV and a second peak at 8.2 eV resembled the characteristics75,76 of

O˙`− fromCO2 andwere ascribed to thermally decomposed valine. Also

in the present case, CO2 is present in the molecular beam (see above),

and therefore, the first peak at about 4.3 eV may be assigned to O˙−/

CO2. The second well‐known peak75,76 at 8.2 eV in the O˙− from CO2

may be obscured due to stronger abundant peak at 9.2 eV. We further

note that the latter peak may also arise from water impurities in the

sample. This hypothesis is further supported by the presence of other

peaks at about 7 and 11.7 eV which were also found for O˙− from

H2O.77 Therefore, one may conclude that only the peak at 5.74 eV

found experimentally results from DEA to His, corresponding to forma-

tion of the NH2
− fragment ion.

Our quantum chemical calculations predict that the thermody-

namic threshold for removal of O˙− from C═O requires 5.56 eV

for τHis and 5.72 eV for πHis. However, removal of O˙− from the

−COOH site with H transfer to C (see Figure 5) lowers the threshold

to 3.65 eV for both His tautomers. On the other hand, NH2
− forma-

tion by simple bond cleavage has even a lower free reaction energy

of 2.61 eV for τHis and 2.31 eV for πHis (see Figure 5). The lower

threshold for NH2
− formation can be explained by the weaker

Cβ−N bond, 3.78 eV for τHis and 3.44 eV for πHis, in comparison

with the C═O bond dissociation energy of 7.34 and 7.50 eV,

respectively.

SPECTROMETRY
5 | CONCLUSIONS

In the present study, we investigated electron ionisation of histidine

close to threshold of the different fragments and dissociative electron

attachment in the electron energy range from about 0 up to 18 eV.

The experimental data were supported by quantum chemical calcula-

tions, which derived free energies of reactions and allowed the identifi-

cation of possible neutral and charged products produced. Generally,

the quantum chemical calculations are in good agreement with the

experimental data within the estimated uncertainties. The experimen-

tally determined ionisation energy of His agreeswith the calculated ver-

tical ionisation energy of the πHis tautomer. In addition to the parent

ion, we investigated the ionisation threshold behaviour of four fragment

ions formed upon electron ionisation of His. The remarkable situation

for [His–COOH]+ occurs that its appearance energy in case of the τ tau-

tomer is very close to the ionisation energy of the Hismolecule. The cal-

culated value indicates that formation of [His–COOH]+ is possible even

below the ionisation energy of the parent; however, the accuracy of the

corresponding experimental values does not allow a direct conclusion.

Such unusual order of ionisation and appearance energies is very scarce

in electron ionisation and was previously reported for CHF2Cl.
78

In the case of negative ion formation, five fragment anions were

obtained in the course of the present studies. Like for all other stud-

ied aromatic (as well as aliphatic) amino acids so far, no molecular
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anion was observed within the detection limit of the apparatus,

which indicates that the temporary negative ion undergoes fast

spontaneous emission of the excess electron or dissociation into sta-

ble fragment anions and neutral(s). The ion yield of the

dehydrogenated parent anion does not show the characteristic

shape of a steep onset close to 1.2 eV obtained for other amino

acids like glycine and formic acid. The absence of this onset may

be explained by the lowered threshold compared to glycine79 as well

as the possibility of H‐loss from the imidazole moiety. For other dis-

sociation channels, we investigated the possibility of structural rear-

rangement, which finally supports the measured threshold in the ion

yields of [His–COOH]− and [C4N2H5]
−.

The previous studies by Wilson et al31 suggest that a large fraction

of the His sample decomposes upon thermal heating (a standard tech-

nique for sublimation of nonvolatile samples). The present study does

not confirm this previous conclusion. By comparison with the mass

spectra of possible decomposition products and calculated thresholds

for positive and negative ion formation, it is possible to assign the

obtained ion yields to reactions of intact histidine in most cases. This

result is in agreement with the previous studies of the His mass spec-

trum based on the laser‐induced acoustic desorption technique,53,54

which is a gentle method to transfer neutral molecule into the gas

phase. The only volatile thermal decomposition product of His

detected in the present mass spectrum is carbon dioxide, which was

straightforward to identify in the electron energy scans due its well‐

known ionisation energy and resonance energies.
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